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Abstract 

The kinetics of an autocatalytic termolecular reaction with overall stoichiometry of A + B -+ C + D was investigated. It is assumed that each 
of the three components A, B and C dissociate into reactive intermediate species, with equilibrium always established in all three cases. The 
rate-limiting step is then assumed to he the reaction between the intermediates formed from A and B, respectively, catalyzed by the reactive 
intermediate formed from product C. Integration of the differential equation describing the chemical kinetics of this process was performed 
for various special cases of initial reactant concentrations-stoichiometric and non-stoichiometric. The analytical solution in the latter case 
incorporates incomplete elliptic integrals of the first kind. Numerical values of reaction times may then be readily computed with the aid of 
various extensive compilations of elliptic integrals. 0 1997 Elsevier Science S.A. 
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1. Introduction 

We consider here the case of a nominally bimolecular 
reaction with the following overall stoichiometry: 

A+B+C+D (1) 

Each of the three materials A, B and C is assumed to dissociate 
into reactive intermediate species, with equilibrium always 
established in all three cases. It is further supposed that the 
rate-limiting step is the reaction between the intermediates 
formed from A and B, respectively, catalyzed by the reactive 
intermediate formed from product C. Integration of the dif- 
ferential equation describing the chemical kinetics of this 
process is then performed for various special cases of initial 
reactant concentrations-stoichiometric and non-stoichio- 
metric. It is found in the latter case that the integrated rate 
expression incorporates incomplete elliptic integrals of the 
first kind. 

2. Reaction mechanism 

The initial reactants A and B are assumed to dissociate into 
the intermediate reactive species I, and I*, respectively, in the 
following fashion: 
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K1 
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K2 

B t) 21, (3) 

wherein K, and K2 denote the equilibrium constants for these 
two respective dissociation reactions, and would have the 
units of concentration. Product C is also assumed to dissociate 
into a reactive intermediate species I3 as follows: 

K3 

c - 213 

with a dissociation equilibrium constant of K3. 

(4) 

It is further assumed that the concentration of each one of 
these intermediate species is always much less than that of 
its precursor, that is, [I,] GZ [A], [ I21 < [B], and 
[ 13] -=K [C] . With these assumptions, it follows that the con- 
centrations of these three reactive intermediates are given by 
the subsequent three equations: 

[Ill =GKl (5) 

[I21 = JK,[Bl’ (6) 

[I31 = m (7) 

where concentrations are denoted by brackets, e.g., [I,]. 
The formation of products C and D is then postulated to 

occur via the elementary termolecular reaction between I, 
and I*, catalyzed by species IS, or: 
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hfhl 

&+I2 + C+D (8) 

The rate of the above autocatalytic reaction is assumed to be 
linearly proportional to the concentration of species Is, and 
thus the rate of appearance of product D, for example, is 
given by: 

~=W,l LIzI iI31 =hk&~,[Al LB1 [Cl (9) 

where k, is the reaction rate constant for this process, with 
the dimensions of (concentration) -*(time) - ’ correspond- 
ing to a third-order process. 

We introduce now the conventional concept of a reaction 
extent t= [A],- [A] (= [B],,- [B]), wherethesubscript 
0 denotes initial conditions (at time t = 0). From the stoichi- 
ometry of the overall process, it is also clear that 
[Cl = [C],+tand [D] = [D]e+& Hence, Eq. (9) may be 
written as: 

~~=KJ([Alo-R([Blo-R([Cl,+5) (10) 

where: 

K=k,dm- (11) 

and would have the units of (concentration) - I’*( time) -I. 

3. Analytical solutions 

The reaction rate expression of Eq. ( lo), in the non-stoi- 
chiometric case of [A] c # [B] ,,, may be compared with the 
representation of a general elliptic integral [ 1 ] : 

I= puX,Y) dr (12) 

where R is a rational function of x and y, and y is a cubic or 
quartic polynomial in x whose zeroes are all different. Thus, 
the integrated solution to this differential equation in the non- 
stoichiometric case may be expected to include elliptic 
integrals. 

We consider first the non-stoichiometric case wherein A is 
the limiting reactant, or [A] ,, < [B] o. After appealing to the 
appropriate mathematical transformations given in various 
handbooks on the subject [ 2,3], the integration of Eq. ( 10) 
in this particular case yields: 

2 
t= 

K\ICBl,+[Cl, 
[F(W,) -F(d&)l (13) 

as the reaction time required to achieve a reaction extent of 
6. It is important at this point to note that the following 
constraints must be observed in the development of Eq. ( 13): 
[B],> [AJ 2(> - [Cl,. Also in Eq. (13), the F(&k,) 
(i = 1, 2) represent incomplete elliptic integrals of the first 
kind, defined as: 

(14) 

The two arguments of these integrals are denoted as theampli- 
tude (&) andthemodulus (ki).Fortbiscaseof [A],< [B],, 
we have for the modulus at either limit of integration: 

k,= 
I (15) 

that is, for either i = 1 or i = 2. The amplitude at the beginning 
of integration (t=O, ij=O) is: 

&=sin-’ [Cl, 
[Al,+ [Cl, (16) 

Similarly, for the upper limit of integration, the amplitude of 
the incomplete elliptic integral is: 

4, =sin-i/z (17) 

Numerical values of elliptic integrals may be found in a num- 
ber of mathematical handbooks [ 4,5]. 

The other non-stoichiometric case occurs when 
[B] e < [A] e, or component B is the limiting reactant. Math- 
ematically, this case is handled by merely interchanging [A] 0 
with [B], in Eq. ( 13) for the reaction time, as well as in Eq. 
(15) for the moduli at both integration limits and in Eqs. 
( 16) and (17) for the two amplitudes of the incomplete 
elliptic integrals. 

4. Special cases 

Two special cases of this reaction system may be 
addressed. The stoichiometric case wherein [A] a = [B] c 
does not result in the appearance of elliptic integrals. The rate 
expression of Eq. (10) in this case may be rewritten as: 

dl ~=W%-Oh6%-I (18) 

which may be integrated to yield for the reaction time: 

1 

t=Km ( ( 
Jrcl,+s+lhZXCO 

In’m-m 1 

1 
dEC+diGXK 

-In \/rcl,-m 1) 
(19) 

This latter expression may be rearranged by taking advantage 
of the properties of logarithms, but it does not appear to be 
amenable to significant simplification. 

Secondly, we consider the case of a termolecular reaction, 
not autocatalytic but between three reactants which first dis- 
sociate into reactive intermediates as described by Eqs. (2)- 
(4). It should be clear in this case that, insofar as the differ- 
ential equation describing this termolecular process would be 
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similartothatofEq.(lO) ([Cl,--&ratherthan([C],+n 
appearing in the radicand], elliptic integrals should also 
appear in the integrated solution when the initial reactant 
ratios are not stoichiometric. 

5. Numeric calculation 

We illustrate the usage of elliptic integrals in the calcula- 
tion of the reaction time for this autocatalytic termolecular 
reaction system with a simple example. The following values 
for the reaction equilibria and rate constants will be taken: 
K,=2X10-‘0gmo11-’ 
K,=4X 10-‘2gmol 1-l 
KS= 1 x 1O-8 gmol 1-l 
k, =5X 10” l* gmol-* s-’ 

The value of the lumped constant K as defined in Eq. ( 11) 
is then equal to 1.414X 10e4 l”* grnol-“* s-l. The follow- 
ing values of initial concentrations will be assumed here: 
[A],=0.8 gmo11-’ 
[B],= 1.2 gmoll-’ 
[C]o=O.Ol gmo11-’ 
which is clearly non-stoichiometric, and hence Eq. (13) is 
applicable. We pose the problem of determining the reaction 
time required to achieve 80% conversion of the limiting reac- 
tant (A) or, equivalently, to attain a reaction extent of 
(= (0.8) (0.8) =0.64 gmoll-‘. 

From Eq. ( 15) the moduli ki for this case are evaluated as 
0.818. The amplitude at the lower limit of integration (+*) 
is equal to 0.111 from Eq. ( 16)) while that at the upper limit 
( K$~) is found from Eq. (17) as 1.110. The two required 

Reaction time (t). scc 

Fig. I. Percentage conversion of the limiting reactant A as a function of the 
reaction time (t) for an autocatalytic termolecular reaction with reactive 
intermediates. Reaction equilibria and rate constants: K, =2X 10-I’ gmol 
1-1, &=4X 10-12 gmol I-‘. K,=lX10-8 gmol 1-I. kl=5X1V0 l2 
gmol-* s-‘. Initial concentrations: [Alo=0.8 gmol 1-l; [B],= 1.2 gmol 
1-l; [C]o=O.O1 gmol I-‘. 

elliptic integrals, at the upper and lower limits of integration, 
are then evaluated [4] as 1.2828 and 0.1117, respectively. 
Finally, from Eq. ( 13)) the reaction time required for 80% 
conversion of the limiting reactant A is 15 060 s, or 4.18 h. 
The course of this autocatalytic termolecularreaction system, 
with the reaction parameters and initial concentrations of the 
above example, is plotted in Fig. 1 in coordinates of the per- 
centage conversion of the limiting reactant A as a function of 
the reaction time. The S-shaped curve presented therein is a 
classical characteristic of the behavior of autocatalytic reac- 
tion systems [ 61. 

6. Conclusions 

Analytical solutions have been developed for the differ- 
ential equation describing the reaction kinetics of anominally 
bimolecular reaction, catalyzed by one of the reaction prod- 
ucts, and with the rate-limiting reaction step actually occur- 
ring between reactive intermediates of low concentrations. 
When the reactants are initially present in stoichiometric pro- 
portions, this differential equation may be integrated in con- 
ventional fashion to obtain an explicit expression for the 
reaction time as a function of the reaction extent. If the reac- 
tants are not initially present in a stoichiometric ratio, then 
the integrated expression for the reaction time incorporates 
elliptic integrals involving the reaction extent, specifically, 
incomplete elliptic integrals of the first kind. An example 
calculation for this latter case is also presented. 

Appendix A. Nomenclature 

[Al 
WI 
[Cl 
F( WI 
I 
[Ijl 

K 
k 

k, 

concentration of reactant A 
concentration of reactant B 
concentration of catalytic product C 
incomplete elliptic integral of the first kind 
general elliptic integral of the function R(x,y) 
concentration of intermediate reactive species j 
(where j= 1,2, 3) 
equilibrium constant for the chemical reaction 
forming Ii 0’ = 1,2, 3) 
defined as the product of d=) and k, 
modulus of incomplete elliptic integrals 
third-order rate constant for the autocatalytic 
reaction 
rational function of x and y 
reaction time 
integration variable in the general elliptic integral 
cubic or quartic function of the variable x 
amplitude of incomplete integral of the first kind 
integration variable in elliptic integrals of the first 
kind 
extent of a chemical reaction 
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